viernes, 6 de noviembre de 2009

miércoles, 28 de octubre de 2009

IV ESPACIOS VECTORIALES

4.1. DEFINICION DE ESPACIO VECTORIAL Y SUS PROPIEDADES.

El plano R2, consistente en los pares (x, y) de números reales, es el típico ejemplo de espacio vectorial: cualquiera dos pares de números reales pueden sumarse,
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),
y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).
Existe además un vector, el (0,0), llamado vector nulo que cumple que al sumarse con cualquier otro vector no lo altera. Todo vector, por ejemplo el (1, 0), tiene su opuesto, el (-1, 0), que sumados dan como resultante el vector nulo (0, 0).
La noción de espacio vectorial es una generalización de esta idea. Es más general de varias maneras: en primer lugar, en lugar de los números reales otros
cuerpos, como los números complejos o los cuerpos finitos, se permiten. En segundo lugar, la dimensión del espacio, que es de dos en el ejemplo anterior, puede ser arbitraria, incluso infinita. Otro punto de vista conceptual importante es que los elementos de los espacios vectoriales no suelen estar expresados como combinaciones lineales de un conjunto de vectores, es decir, no hay preferencia de representar el vector (x, y ) como
(x, y) = x · (1, 0) + y · (0, 1)
o como
(x, y) = (−1/3·x + 2/3·y) · (−1, 1) + (1/3·x + 1/3·y) · (2, 1)

Definición

La definición de un espacio vectorial requiere de un
cuerpo de escalares K (como el cuerpo de los números reales o el cuerpo de los números complejos). Un espacio vectorial es un conjunto V (no vacío) a cuyos elementos se llaman vectores, dotado de dos operaciones:
suma de vectores: cualquiera dos vectores v y w pueden sumarse para obtener un tercer vector v + w
producto por un escalar: cualquier vector v puede multiplicarse por un escalar, i.e. un elemento de K, a. El producto se denota como av.
que satisfacen las siguientes propiedades o axiomas (u, v, w son vectores arbitrarios de V, y a, b son escalares, respectivamente):

Propiedad asociativa de la suma
u + (v + w) = (u + v) + w

Propiedad conmutativa de la suma
v + w = w + v

Existencia de elemento neutro o nulo de la suma

Existe un elemento 0 ∈ V, llamado vector cero o nulo, de forma que v + 0 = v para todo v ∈ V.

Existencia de elemento opuesto o simétrico de la suma
Para todo v ∈ V, existe un elemento -v ∈ V, llamado opuesto de v, de forma que v + (-v) = 0.

Propiedad distributiva del producto por un escalar respecto a la suma de vectores
a (v + w) = a v + a w
Propiedad distributiva del producto por un vector respecto a la suma de escalares
(a + b) v = a v + b v
Propiedad asociativa mixta del producto por un escalar
a (b v) = (ab) v
[nb 1]
Existencia de elemento unidad del producto por un escalar
1 v = v, donde 1 es la
identidad multiplicativa en K
Con esta definición puede comprobarse que R2, con la suma y producto vistos arriba, es por tanto un espacio vectorial. Comprobar los axiomas se reduce a verificar identidades sencillas como
(x, y) + (0, 0) = (x, y),
i.e. la suma de un vector nulo (0, 0) con otro vector produce el mismo vector. La propiedad distributiva lleva a
(a + b) · (x, y) = a · (x, y) + b · (x, y).

4.2.- DEFINICION DE SUBESPACIO DE UN ESPACIO VECTORIAL Y SUS PROPIEDADES

Definición

Sean (V,+,K,*) un espacio vectorial y S un subconjunto de V.
S es subespacio vectorial de V si (S,+,K,*) es espacio vectorial en sí mismo, siendo + y * las mismas operaciones definidas en V.

Criterio de subespacio

El criterio para la verificación de que S es subespacio de V, es que ambas operaciones (+ entre elementos del conjunto S y * con escalares del cuerpo K) sean cerradas, es decir, den como resultado elementos que también pertenezcan a S.
Un espacio vectorial es un conjunto no vacío que cumple con estas tres condiciones:
1) El Punto Origen pertenece al conjunto. Ej: (0,0,0) 2) Sea K un número real y {v} un vector que pertenece al conjunto entonces K.v también pertenece al conjunto. 3) Sean {u} y {v} dos vectores que pertenecen al conjunto entonces u+v también pertenece al conjunto.
Si estos tres axiomas se cumplen entonces el conjunto es un subespacio.

4.3.- Propiedades de vectores, combinacion lineal, dependencia e independencia lineal.

Sea {v1, v2,..., vn} un conjunto de vectores. Decimos que son linealmente dependientes si existen números 'a1, a2,..., an, no todos iguales a cero, tal que:

Nótese que el simbolo a la derecha del signo de igual no es cero, sino que simboliza al
vector nulo. El conjunto de vectores nulos forma la matriz nula.
Si tales números no existen, entonces los vectores son linealmente independientes.
Utilizando conceptos de
espacios vectoriales podemos redefinir la independencia lineal así:
Un conjunto de vectores U de un espacio vectorial es linealmente independiente si ∀
Esta idea es importante porque los conjuntos de vectores que son linealmente indepedientes y generan a un espacio vectorial, forman una base para dicho espacio.
Entre las propiedades de los vectores linealmente dependientes e independientes encontramos:
Un conjunto de vectores es linealmente dependiente si y solamente si alguno de los vectores es combinación lineal de los demás.
Si un conjunto de vectores es linealmente independiente cualquier subconjunto suyo también lo es.
Obviamente, si tenemos un conjunto de vectores tales que ninguno de ellos es combinación de los demás, escogiendo solamente unos cuantos, no podrán ser combinación de los otros.
Si un conjunto de vectores es linealmente dependiente también lo es todo conjunto que lo contenga.
Ya que un conjunto de vectores es linealmente dependiente
si y solo si tiene algún vector que es combinación lineal de los demás, si metemos este conjunto de vectores en otro más grande, seguimos teniendo el vector que es combinación lineal de otros, por tanto, el conjunto más grande sigue siendo linealmente dependiente.

Significación geométrica
Geometricamente, dos vectores son independientes si no tienen la misma dirección (con sentidos idénticos u opuestos). Esta definición supone que el vector nulo tiene todas las direcciones.
Tres vectores son independientes si y solo si no están contenidos en el mismo plano vectorial, o sea si ninguno de ellos es una combinación lineal de los otros dos(en cuyo caso estaría en el plano generado por estos vectores).
El espacio generado por un sistema de vectores es el conjunto de todas las combinaciones lineales de estos vectores. Es un espacio vectorial. El espacio generado por un vector no nulo es la recta vectorial dirigido por este vector. El espacio generado por dos vectores independientes es el plano que los contiene. Resulta fácil comprobar que el espacio generado por un sistema de vectores es el menor (por la inclusión) espacio vectorial que los contiene a todos. Se le denomina vect A, donde A es el sistema de vectores. Si n vectores son independientes, el espacio generado es de dimensión n (dimensión en el sentido usual: 0 para un punto, 1 para una recta, 2 para un plano...).

4.4.- Base y dimensión de un espacio vectorial

Las bases revelan la estructura de los espacios vectoriales de una manera concisa. Una base es el menor conjunto (finito o infinito) B = {vi}i ∈ I de vectores que generan todo el espacio. Esto significa que cualquier vector v puede ser expresado como una suma (llamada combinación lineal) de elementos de la base
a1vi1 + a2vi2 + ... + anvin,
donde los ak son escalares y vik (k = 1, ..., n) elementos de la base B. La minimalidad, por otro lado, se hace formal por el concepto de
independencia lineal. Un conjunto de vectores se dice que es linealmente independiente si ninguno de sus elementos puede ser expresado como una combinación lineal de los restantes. Equivalentemente, una ecuación
a1vi1 + ai2v2 + ... + anvin = 0
sólo se consigue si todos los escalares a1, ..., an son iguales a cero. Por definición cada vector puede ser expresado como una suma finita de los elementos de la base. Debido a la independencia lineal este tipo de representación es única. Los espacios vectoriales a veces se introducen desde este punto de vista.
Todo espacio vectorial tiene una base. Este hecho se basa en el lema de Zorn, una formulación equivalente del axioma de elección. Habida cuenta de los otros axiomas de la teoría de conjuntos de Zermelo-Fraenkel, la existencia de bases es equivalente al axioma de elección. El ultrafilter lemma, que es más débil que el axioma de elección, implica que todas las bases de un espacio vectorial tienen el mismo "tamaño", es decir, cardinalidad. A ésta, se le llama la dimensión del espacio vectorial, representada por dim V. Si el espacio es generado por un número finito de vectores, todo lo anterior puede demostrarse sin necesidad de acudir a la teoría de conjuntos.
La dimensión de un espacio de coordenadas Fn es n, pues cualquier vector (x1, x2, ..., xn) puede expresarse de forma única como combinación lineal de n vectores (llamados vectores coordenadas) e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), a en = (0, 0, ..., 0, 1), es decir, la suma
x1e1 + x2e2 + ... + xnen,
La dimensión de los espacios de funciones, como por ejemplo el espacio de funciones definidas en algún intervalo acotado o no, es infinita. Bajo unas adecuadas asunciones de regularidad de los coeficientes involucrados, la dimensión del espacio de soluciones de una ecuación diferencial ordinaria homogénea es igual al grado de la ecuación. Por ejemplo, la ecuación anterior tiene grado 2. El espacio de soluciones está generado por ex y xex (que son linealmente independientes en R), por lo que la dimensión de este espacio es dos.
La dimension (o grado) de una extensión como por ejemplo Q(z) sobre Q depende de si z es o no algebraico, i.e. satisface una cierta ecuación polinomial
qnzn + qn−1zn−1 + ... + q0 = 0, con coeficientes racionales qn, ..., q0.
Si es algebraico, la dimensión es finita. Es más, es igual al grado del
polinomio mínimo del que z es raíz. Por ejemplo,el conjunto de los números complejos es un espacio vectorial bidimensional sobre los números reales, generado por 1 y la unidad imaginaria i. Ésta última cumple i2 + 1 = 0, una ecuación de grado dos. Si z no es algebraico, la dimensión es infinita. Así, para z = π no existe dicha ecuación, pues π es trascendente.

viernes, 23 de octubre de 2009

lunes, 19 de octubre de 2009

BIOGRAFIA DE CRAMER

Gabriel Cramer (31 de julio, 1704 - 4 de enero, 1752) fue un matemático Suizo nacido en Ginebra. Profesor de matemáticas de la Universidad de Ginebra durante el periodo 1724-27. En 1750 ocupó la cátedra de filosofía en dicha universidad. En 1731 presentó ante la Academia de las Ciencias de París, una memoria sobre las múltiples causas de la inclinación de las órbitas de los planetas. Editó las obras de Jean Bernouilli (1742) y Jacques Bernouilli (1744) y el Comercium epistolarum de Leibniz. Su obra fundamental fue la "Introduction à l’analyse des courbes algébriques" (1750), en la que se desarrolla la teoría de las curvas algégricas según los principios newtonianos, demostrando que una curva de grado n viene dada por la expresión:Reintrodujo el determinante, algoritmo que Leibniz ya había utilizado al final del siglo XVII para resolver sistemas de ecuaciones lineales con varias incógnitas. Editó las obras de Jakob Bernoulli y parte de la correspondencia de Leibniz.Regla de Cramer La regla de Cramer es un teorema en álgebra lineal, que da la solución de un sistema lineal de ecuaciones en términos de determinantes. Recibe este nombre en honor a Gabriel Cramer (1704 - 1752).Si es un sistema de ecuaciones. A es la matriz de coeficientes del sistema, es el vector columna de las incógnitas y es el vector columna de los términos independientes. Entonces la solución al sistema se presenta así:Donde Aj es la matriz resultante de remplazar la j-ésima columna de A por el vector columna b.