miércoles, 28 de octubre de 2009

IV ESPACIOS VECTORIALES

4.1. DEFINICION DE ESPACIO VECTORIAL Y SUS PROPIEDADES.

El plano R2, consistente en los pares (x, y) de números reales, es el típico ejemplo de espacio vectorial: cualquiera dos pares de números reales pueden sumarse,
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),
y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).
Existe además un vector, el (0,0), llamado vector nulo que cumple que al sumarse con cualquier otro vector no lo altera. Todo vector, por ejemplo el (1, 0), tiene su opuesto, el (-1, 0), que sumados dan como resultante el vector nulo (0, 0).
La noción de espacio vectorial es una generalización de esta idea. Es más general de varias maneras: en primer lugar, en lugar de los números reales otros
cuerpos, como los números complejos o los cuerpos finitos, se permiten. En segundo lugar, la dimensión del espacio, que es de dos en el ejemplo anterior, puede ser arbitraria, incluso infinita. Otro punto de vista conceptual importante es que los elementos de los espacios vectoriales no suelen estar expresados como combinaciones lineales de un conjunto de vectores, es decir, no hay preferencia de representar el vector (x, y ) como
(x, y) = x · (1, 0) + y · (0, 1)
o como
(x, y) = (−1/3·x + 2/3·y) · (−1, 1) + (1/3·x + 1/3·y) · (2, 1)

Definición

La definición de un espacio vectorial requiere de un
cuerpo de escalares K (como el cuerpo de los números reales o el cuerpo de los números complejos). Un espacio vectorial es un conjunto V (no vacío) a cuyos elementos se llaman vectores, dotado de dos operaciones:
suma de vectores: cualquiera dos vectores v y w pueden sumarse para obtener un tercer vector v + w
producto por un escalar: cualquier vector v puede multiplicarse por un escalar, i.e. un elemento de K, a. El producto se denota como av.
que satisfacen las siguientes propiedades o axiomas (u, v, w son vectores arbitrarios de V, y a, b son escalares, respectivamente):

Propiedad asociativa de la suma
u + (v + w) = (u + v) + w

Propiedad conmutativa de la suma
v + w = w + v

Existencia de elemento neutro o nulo de la suma

Existe un elemento 0 ∈ V, llamado vector cero o nulo, de forma que v + 0 = v para todo v ∈ V.

Existencia de elemento opuesto o simétrico de la suma
Para todo v ∈ V, existe un elemento -v ∈ V, llamado opuesto de v, de forma que v + (-v) = 0.

Propiedad distributiva del producto por un escalar respecto a la suma de vectores
a (v + w) = a v + a w
Propiedad distributiva del producto por un vector respecto a la suma de escalares
(a + b) v = a v + b v
Propiedad asociativa mixta del producto por un escalar
a (b v) = (ab) v
[nb 1]
Existencia de elemento unidad del producto por un escalar
1 v = v, donde 1 es la
identidad multiplicativa en K
Con esta definición puede comprobarse que R2, con la suma y producto vistos arriba, es por tanto un espacio vectorial. Comprobar los axiomas se reduce a verificar identidades sencillas como
(x, y) + (0, 0) = (x, y),
i.e. la suma de un vector nulo (0, 0) con otro vector produce el mismo vector. La propiedad distributiva lleva a
(a + b) · (x, y) = a · (x, y) + b · (x, y).

No hay comentarios:

Publicar un comentario